
WIMOD Communication protocol 

The communication protocol between a WIMOD modules network and a receiver sw is on 2 levels. 

First level is the communication between the application sw and the receiver RF module.  

You need to implement  this level to initialize the receiver hardware and to get RF data coming from the WIMODs network. 

It is based on a USB port managed by a FTDI FT232R chip. The port is seen as a virtual serial port so no special driver or library are necessary to use 

in your driver. You have just to  use the standard API for a serial port. 

You must open the serial port with the followings parameters : baud: 19200 : parity : none : stop bit : 1 : N. bit : 8 

 The second level of the communication protocol is necessary to implement commands to WIMODs and to decode data coming from WIMODS. 

WIMOD /RECEIVER  RF  COMMUNICATION 

Each WIMODs network is identified by network address (4 chars) (common to all modules) and for each RF module is assigned a dedicated address 

(4 chars) (normally the last four digits of its serial number). 

These allow that can exist more than one WIMODs networks at the same time 

These addresses (network and module address) are AEP factory assigned. 

 AEP will communicate for each delivered system the addresses that will be assigned to each modules 

From the RF communication point of view all WIMODs modules are slaves and the RF receiver is a master. 

Each WIMOds modules transmit  its load values at regular interval (from .1s to 5s) . The time between two data can be changed by the master.    

The master from time to time (let me say : every 5 s) must send at least one command to each slave. In this way WIMOD recognize that the receiver 

is on and continue to transmit. 

To save battery life each WIMOD actives the radio only for a certain time. It transmit the load data packet and then  for 40ms still keep the radio on  

waiting for a master command. 

The master so must send its commands inside the RX TIME slot. As soon as it receives some data from a WIMOD it must send its command to it to 

be sure the WIMOD radio is still on. 

Communication_Protocol_WIMOD_V1



If a WIMOD does not receive at least one command from the master  it goes in power down mode in order to save battery life. 

In power down mode WIMOD transmit a data packet every 8s. 

RECEIVER INITIALITATION 

To init the RF receiver module it is necessary to send some commands to it. 

"C151"; // send * after command 

"C01XXXX"; // XXXX = network address 

"C02YYYY"; // YYYY = master address 

"C0406"; // the data packed length is 6 byte  

"C07Z"; // Z= power Level (valid values are : ‘0’-‘1’-‘2’-‘3’ 

"C08"; // Init Radio 

"C14"; // Set Output *WD 

"C150"; // don't send * after command 

It is not the scope of this document describe this commands. Refere to the document G3P_um_rel_201b.pdf 

MASTER COMMANDS 

There are just a few commands that the master can send to each WIMOD to set parameters : 

The application sw must send 3 messages to the RF receiver module with the indication of the destination WIMOD address command  

"C03KKKK"; // KKKK = destination WIMOD address slave address 

"C30XXXX00"; // XXXX00 : 6 byte of Payload data command  

"C31"; 

Inside the KKKK field you have to specify the destination WIMOD and inside the XXXX00 you put the commands and its associate parameters (last 2 

char always 0). 

The meaning of XXXX commands fields is the following : 

X  X  X  X 

+----------------- command parameter      P1 

     +------------- command parameter      P2 

         +---------- command parameter      P3 

+------- command specifier :  valid values are   ‘0’: do nothing : used for keep alive the WIMOD 

‘1’: zero on/off:  P1 = ‘0’  zero Off  : ‘1’  zero On  : ASCII value 

‘2’: set power level :  P1 = ‘0’  power level = -10dbm : ASCII Value 

P1=  ‘1’  power level = -2dbm 

P1=  ‘2‘  power level = +6dbm 

P1 = ‘3’  power level = +10dbm 

‘3’: TxRate Interval (in step of 100ms) 

P1= 1..50  : binary value 

 P2=0 ; binary value 

 P3=0 ; binary value 

‘6’: Set Filter  P1=0..31 : binary value 



DECODING RECEIVED DATA FROM WIMOD 

The application sw must polls data coming from WIMODs modules on the serial line 

Any time the RF receiver module get valid data from a WIMOD it send a data packet of  10 characters. 

The first 4 characters are the address of the WIMOD module. 

The following 6 characters are the load data sent from the WIMOD. 

The 6 chars received from the WIMOD are bit oriented with the following format : 

 byte 5   byte 4   byte 3   byte 2   byte 1   byte 0     

7    0      7    0   7    0    7    0    7   0   7    0    bit 

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 

|||||||| |||||||| |||||||| ||||++++++++++++++++++++++++ 20 bit binary value with sign 

|||||||| |||||||| |||||||| |+++------------------------ Moltiplicative Factor 

|||||||| |||||||| |||||||| +--------------------------- Zero On / Zero Off 

|||||||| |||||||| |||||||+----------------------------- Low Battery 

|||||||| |||||||| |||||++------------------------------ Level Power 

|||||||| |||||||| ||||+--------------------------------  AEP reserved 

|||||||| |||||||| ++++---------------------------------  AEP reserved 

|||||||| ++++++++-------------------------------------- Filter Value 

++++++++---------------------------------------------------  Tx Rate 

Moltiplicative Factor: 

3 bytes: gives an exponent to the 20bit value according to the following table 

000 =  0.0001 

001 =  0.0010 

010 =  0.0100 

011 =  0.1000 

100 =  1.00 

101 =  10.0 

110 = 100.0 

111 =1000.0 

So the real load value is  

Displayed Value  ActualValue*FattoreMoltiplicativo 



//signal if the load cell is overload/underload/  in range    state 

// WIMOD Load 

// WIMOD actual setup : Power Level,Filter,TxRate 

CODE EXAMPLE to decode receiving data from a WIMOD 

RxBuffer is the RX communication buffer.  

j is the index inside the buffer where it was recognized the message coming from a WIMOD address ‘E0E2’  . 

In this example you have 

RxBuffer[j+0]= ‘E’ 

RxBuffer[j+1]= ‘0’ 

RxBuffer[j+2]= ‘E’ 

RxBuffer[j+3]= ‘2’ 

char RxBuffer[10000]; 

int stato;  

float value; 

int PowerLevel; 

int Filtro;  

int TxRate; 

void DecodeMessageWIMOD(int j) 

{ 

union 

{ 

  long L; 

  BYTE Buffer[4]; 

} L; 

L.Buffer[0]=RxBuffer[4+j]; // extract the load info (20 bit) 

L.Buffer[1]=RxBuffer[5+j]; 

L.Buffer[2]=RxBuffer[6+j] & 0xf; 

if (RxBuffer[6+j] & 0x8) // detect the sign and extend it to the long variable 

{ 

 L.Buffer[3]=0xff; 

L.Buffer[2]|=0xf0; 

} 

else 

{ 

 L.Buffer[3]=0; 

L.Buffer[2]&=0x0f; 

} 

if (L.L==0x7ffff) stato=1; //UPPER (if  value = 0x7ffff then WIMOD is in overload) 

else if (L.L==0xfff80000) stato=2;  //LOWER   (if value =   0xfff80000 then is underload) 

else 

{ 

stato=0; 

switch(RxBuffer[6+j] & 0x70) 

{ 

case 0x00:FactMul=0.0001f;break; 

case 0x10:FactMul=0.001f;break; 

case 0x20:FactMul=0.01f;break; 

case 0x30:FactMul=0.1f;break; 

case 0x40:FactMul=1.0f;break; 

case 0x50:FactMul=10.0f;break; 

case 0x60:FactMul=100.0f;break; 

case 0x70:FactMul=1000.0f;break; 

} 

value=(float)L.L*FactMul; 

} 



if (RxBuffer[6+j] & 0x80)  

ZeroOn=true;  

else  

ZeroOn=false; 

if (RxBuffer[7+j] & 0x1)  

LowBattery=true;  

else  

LowBattery=false; 

Filtro=RxBuffer[8+j]; 

TxRate=RxBuffer[9+j]; 

switch(RxBuffer[7+j] & 0x06) 

{ 

case 0x00:PowerLevel=0;break; 

case 0x02:PowerLevel=1;break; 

case 0x04:PowerLevel=2;break; 

case 0x06:PowerLevel=3;break; 

} 


